MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. ASTM A182 Grade F36

EN AC-42200 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F36 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 89 to 100
220
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.0 to 6.7
17
Fatigue Strength, MPa 86 to 90
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 320
710
Tensile Strength: Yield (Proof), MPa 240 to 260
490

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.4
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1110
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
110
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 34 to 35
25
Strength to Weight: Bending, points 40 to 41
22
Thermal Diffusivity, mm2/s 66
10
Thermal Shock Resistance, points 15
21

Alloy Composition

Aluminum (Al), % 91 to 93.1
0 to 0.050
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
0.5 to 0.8
Iron (Fe), % 0 to 0.19
95 to 97.1
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 6.5 to 7.5
0.25 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0