MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. C94100 Bronze

EN AC-43100 aluminum belongs to the aluminum alloys classification, while C94100 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is C94100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
92
Elongation at Break, % 1.1 to 2.5
7.8
Poisson's Ratio 0.33
0.36
Shear Modulus, GPa 27
34
Tensile Strength: Ultimate (UTS), MPa 180 to 270
190
Tensile Strength: Yield (Proof), MPa 97 to 230
130

Thermal Properties

Latent Heat of Fusion, J/g 540
160
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 600
870
Melting Onset (Solidus), °C 590
790
Specific Heat Capacity, J/kg-K 900
330
Thermal Expansion, µm/m-K 22
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.6
9.2
Embodied Carbon, kg CO2/kg material 7.8
3.0
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1070
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
14
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
97
Stiffness to Weight: Axial, points 15
5.5
Stiffness to Weight: Bending, points 54
16
Strength to Weight: Axial, points 20 to 29
5.8
Strength to Weight: Bending, points 28 to 36
8.1
Thermal Shock Resistance, points 8.6 to 12
7.6

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Copper (Cu), % 0 to 0.1
72 to 79
Iron (Fe), % 0 to 0.55
0 to 0.25
Lead (Pb), % 0 to 0.050
18 to 22
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0
Nickel (Ni), % 0 to 0.050
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 9.0 to 11
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.050
4.5 to 6.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 1.3