MakeItFrom.com
Menu (ESC)

EN AC-43300 Aluminum vs. Grade 5 Titanium

EN AC-43300 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN AC-43300 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 3.4 to 6.7
8.6 to 11
Fatigue Strength, MPa 76 to 77
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 280 to 290
1000 to 1190
Tensile Strength: Yield (Proof), MPa 210 to 230
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 540
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 600
1610
Melting Onset (Solidus), °C 590
1650
Specific Heat Capacity, J/kg-K 910
560
Thermal Conductivity, W/m-K 140
6.8
Thermal Expansion, µm/m-K 22
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.5
4.4
Embodied Carbon, kg CO2/kg material 7.9
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1080
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 17
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
3980 to 5880
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
35
Strength to Weight: Axial, points 31 to 32
62 to 75
Strength to Weight: Bending, points 37 to 38
50 to 56
Thermal Diffusivity, mm2/s 59
2.7
Thermal Shock Resistance, points 13 to 14
76 to 91

Alloy Composition

Aluminum (Al), % 88.9 to 90.8
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.19
0 to 0.4
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 9.0 to 10
0
Titanium (Ti), % 0 to 0.15
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0
0 to 0.4