MakeItFrom.com
Menu (ESC)

EN AC-44400 Aluminum vs. ACI-ASTM CK3MCuN Steel

EN AC-44400 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK3MCuN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44400 aluminum and the bottom bar is ACI-ASTM CK3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61
180
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.1
39
Fatigue Strength, MPa 79
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 210
620
Tensile Strength: Yield (Proof), MPa 110
290

Thermal Properties

Latent Heat of Fusion, J/g 540
300
Maximum Temperature: Mechanical, °C 170
1090
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 590
1350
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.8
5.6
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1080
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3
200
Resilience: Unit (Modulus of Resilience), kJ/m3 85
210
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 31
20
Thermal Diffusivity, mm2/s 60
3.2
Thermal Shock Resistance, points 9.8
14

Alloy Composition

Aluminum (Al), % 87.1 to 92
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 0 to 0.1
0.5 to 1.0
Iron (Fe), % 0 to 0.65
49.5 to 56.3
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.2
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.050
17.5 to 19.5
Nitrogen (N), % 0
0.18 to 0.24
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0