MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. ASTM A182 Grade F36

EN AC-45400 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F36 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
220
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.7
17
Fatigue Strength, MPa 55
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 260
710
Tensile Strength: Yield (Proof), MPa 130
490

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 140
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.4
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1100
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110
650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 32
22
Thermal Diffusivity, mm2/s 54
10
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
0 to 0.050
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 2.6 to 3.6
0.5 to 0.8
Iron (Fe), % 0 to 0.6
95 to 97.1
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0 to 0.1
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 6.0
0.25 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0