MakeItFrom.com
Menu (ESC)

EN AC-45500 Aluminum vs. SAE-AISI M6 Steel

EN AC-45500 aluminum belongs to the aluminum alloys classification, while SAE-AISI M6 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45500 aluminum and the bottom bar is SAE-AISI M6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 320
840 to 2210

Thermal Properties

Latent Heat of Fusion, J/g 500
260
Melting Completion (Liquidus), °C 610
1560
Melting Onset (Solidus), °C 600
1510
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1110
160

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 34
28 to 73
Strength to Weight: Bending, points 40
24 to 45
Thermal Diffusivity, mm2/s 65
4.7
Thermal Shock Resistance, points 15
26 to 68

Alloy Composition

Aluminum (Al), % 90.6 to 93.1
0
Carbon (C), % 0
0.75 to 0.85
Chromium (Cr), % 0
3.8 to 4.5
Cobalt (Co), % 0
11 to 13
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.25
68.8 to 74.6
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.15
0.15 to 0.4
Molybdenum (Mo), % 0
4.5 to 5.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 6.5 to 7.5
0.2 to 0.45
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
3.8 to 4.8
Vanadium (V), % 0
1.3 to 1.7
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0