MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. ASTM A182 Grade F3VCb

EN AC-46000 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F3VCb belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is ASTM A182 grade F3VCb.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
210
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
21
Fatigue Strength, MPa 110
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
74
Tensile Strength: Ultimate (UTS), MPa 270
670
Tensile Strength: Yield (Proof), MPa 160
460

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 180
470
Melting Completion (Liquidus), °C 620
1470
Melting Onset (Solidus), °C 530
1430
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 82
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.5
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.6
2.4
Embodied Energy, MJ/kg 140
33
Embodied Water, L/kg 1040
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 33
22
Thermal Diffusivity, mm2/s 42
11
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Calcium (Ca), % 0
0.00050 to 0.015
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0 to 0.15
2.7 to 3.3
Copper (Cu), % 2.0 to 4.0
0 to 0.25
Iron (Fe), % 0 to 1.3
93.8 to 95.8
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.55
0 to 0.25
Niobium (Nb), % 0
0.015 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.0 to 11
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.015
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0