MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. S21600 Stainless Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while S21600 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is S21600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
200
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
46
Fatigue Strength, MPa 110
360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
79
Tensile Strength: Ultimate (UTS), MPa 270
710
Tensile Strength: Yield (Proof), MPa 160
390

Thermal Properties

Latent Heat of Fusion, J/g 530
290
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
17
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.6
3.6
Embodied Energy, MJ/kg 140
50
Embodied Water, L/kg 1040
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
270
Resilience: Unit (Modulus of Resilience), kJ/m3 170
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 33
23
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.15
17.5 to 22
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
57.6 to 67.8
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
7.5 to 9.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.55
5.0 to 7.0
Nitrogen (N), % 0
0.25 to 0.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.0 to 11
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0