MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. S21640 Stainless Steel

EN AC-46300 aluminum belongs to the aluminum alloys classification, while S21640 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
230
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
46
Fatigue Strength, MPa 79
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 200
740
Tensile Strength: Yield (Proof), MPa 110
350

Thermal Properties

Latent Heat of Fusion, J/g 490
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
17
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.7
3.6
Embodied Energy, MJ/kg 140
51
Embodied Water, L/kg 1060
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
280
Resilience: Unit (Modulus of Resilience), kJ/m3 89
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 20
27
Strength to Weight: Bending, points 27
23
Thermal Diffusivity, mm2/s 47
4.0
Thermal Shock Resistance, points 9.1
16

Alloy Composition

Aluminum (Al), % 84 to 90
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 0.8
63 to 74.3
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.2 to 0.65
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 0 to 0.3
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0.080 to 0.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 6.5 to 8.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.65
0
Residuals, % 0 to 0.55
0