MakeItFrom.com
Menu (ESC)

EN AC-48000 Aluminum vs. EN 1.4594 Stainless Steel

EN AC-48000 aluminum belongs to the aluminum alloys classification, while EN 1.4594 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48000 aluminum and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
11 to 17
Fatigue Strength, MPa 85 to 86
490 to 620
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 220 to 310
1020 to 1170
Tensile Strength: Yield (Proof), MPa 210 to 270
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 570
280
Maximum Temperature: Mechanical, °C 190
820
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.9
3.2
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 1030
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 3.0
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 510
1660 to 3320
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 23 to 33
36 to 41
Strength to Weight: Bending, points 31 to 39
29 to 31
Thermal Diffusivity, mm2/s 54
4.4
Thermal Shock Resistance, points 10 to 15
34 to 39

Alloy Composition

Aluminum (Al), % 80.4 to 87.2
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 0.8 to 1.5
1.2 to 2.0
Iron (Fe), % 0 to 0.7
72.6 to 79.5
Magnesium (Mg), % 0.8 to 1.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 0.7 to 1.3
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0