MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. EN 1.4490 Stainless Steel

EN AC-48100 aluminum belongs to the aluminum alloys classification, while EN 1.4490 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is EN 1.4490 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
200
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 120 to 130
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 29
78
Tensile Strength: Ultimate (UTS), MPa 240 to 330
560
Tensile Strength: Yield (Proof), MPa 190 to 300
260

Thermal Properties

Latent Heat of Fusion, J/g 640
300
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 470
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 87
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.3
3.7
Embodied Energy, MJ/kg 130
52
Embodied Water, L/kg 940
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
160
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24 to 33
20
Strength to Weight: Bending, points 31 to 38
19
Thermal Diffusivity, mm2/s 55
4.1
Thermal Shock Resistance, points 11 to 16
16

Alloy Composition

Aluminum (Al), % 72.1 to 79.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
61.7 to 70.9
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0 to 0.3
9.0 to 12
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 16 to 18
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0