MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. ACI-ASTM CF8C Steel

EN AC-51200 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF8C steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
150
Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
40
Fatigue Strength, MPa 100
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 220
530
Tensile Strength: Yield (Proof), MPa 150
260

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 92
16
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 74
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.6
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
180
Resilience: Unit (Modulus of Resilience), kJ/m3 160
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 31
19
Thermal Diffusivity, mm2/s 39
4.3
Thermal Shock Resistance, points 10
11

Alloy Composition

Aluminum (Al), % 84.5 to 92
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 1.0
61.8 to 73
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
0
Manganese (Mn), % 0 to 0.55
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.1
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 2.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0