MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. S15700 Stainless Steel

CC380H copper-nickel belongs to the copper alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
200 to 460
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 26
1.1 to 29
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
77
Tensile Strength: Ultimate (UTS), MPa 310
1180 to 1890
Tensile Strength: Yield (Proof), MPa 120
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
870
Melting Completion (Liquidus), °C 1130
1440
Melting Onset (Solidus), °C 1080
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 46
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
3.4
Embodied Energy, MJ/kg 58
47
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 59
640 to 4660
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.8
42 to 67
Strength to Weight: Bending, points 12
32 to 43
Thermal Diffusivity, mm2/s 13
4.2
Thermal Shock Resistance, points 11
39 to 63

Alloy Composition

Aluminum (Al), % 0 to 0.010
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 84.5 to 89
0
Iron (Fe), % 1.0 to 1.8
69.6 to 76.8
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 9.0 to 11
6.5 to 7.7
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0