MakeItFrom.com
Menu (ESC)

CC383H Copper-nickel vs. Grade 9 Titanium

CC383H copper-nickel belongs to the copper alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC383H copper-nickel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
110
Elongation at Break, % 20
11 to 17
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 52
40
Tensile Strength: Ultimate (UTS), MPa 490
700 to 960
Tensile Strength: Yield (Proof), MPa 260
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 260
330
Melting Completion (Liquidus), °C 1180
1640
Melting Onset (Solidus), °C 1130
1590
Specific Heat Capacity, J/kg-K 410
550
Thermal Conductivity, W/m-K 29
8.1
Thermal Expansion, µm/m-K 15
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 44
37
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.7
36
Embodied Energy, MJ/kg 83
580
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1380 to 3220
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 15
43 to 60
Strength to Weight: Bending, points 16
39 to 48
Thermal Diffusivity, mm2/s 8.1
3.3
Thermal Shock Resistance, points 17
52 to 71

Alloy Composition

Aluminum (Al), % 0 to 0.010
2.5 to 3.5
Bismuth (Bi), % 0 to 0.010
0
Boron (B), % 0 to 0.010
0
Cadmium (Cd), % 0 to 0.020
0
Carbon (C), % 0 to 0.030
0 to 0.080
Copper (Cu), % 64 to 69.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.5 to 1.5
0 to 0.25
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 29 to 31
0
Niobium (Nb), % 0.5 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.010
0
Selenium (Se), % 0 to 0.010
0
Silicon (Si), % 0.3 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Tellurium (Te), % 0 to 0.010
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4