MakeItFrom.com
Menu (ESC)

CC483K Bronze vs. Grade 23 Titanium

CC483K bronze belongs to the copper alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC483K bronze and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.4
6.7 to 11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 310
930 to 940
Tensile Strength: Yield (Proof), MPa 170
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 990
1610
Melting Onset (Solidus), °C 870
1560
Specific Heat Capacity, J/kg-K 370
560
Thermal Conductivity, W/m-K 68
7.1
Thermal Expansion, µm/m-K 18
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
36
Density, g/cm3 8.7
4.4
Embodied Carbon, kg CO2/kg material 3.8
38
Embodied Energy, MJ/kg 62
610
Embodied Water, L/kg 400
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 130
3430 to 3560
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 9.9
58 to 59
Strength to Weight: Bending, points 12
48
Thermal Diffusivity, mm2/s 21
2.9
Thermal Shock Resistance, points 11
67 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.010
5.5 to 6.5
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 85 to 89
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0 to 0.7
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.6
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10.5 to 13
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4