MakeItFrom.com
Menu (ESC)

CC492K Bronze vs. S15700 Stainless Steel

CC492K bronze belongs to the copper alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC492K bronze and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78
200 to 460
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
1.1 to 29
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 280
1180 to 1890
Tensile Strength: Yield (Proof), MPa 150
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 1000
1440
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 73
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
15
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.4
Embodied Energy, MJ/kg 54
47
Embodied Water, L/kg 370
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 100
640 to 4660
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.7
42 to 67
Strength to Weight: Bending, points 11
32 to 43
Thermal Diffusivity, mm2/s 23
4.2
Thermal Shock Resistance, points 10
39 to 63

Alloy Composition

Aluminum (Al), % 0 to 0.010
0.75 to 1.5
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 83 to 89
0
Iron (Fe), % 0 to 0.2
69.6 to 76.8
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 2.0
6.5 to 7.7
Phosphorus (P), % 0 to 0.1
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0 to 0.1
0 to 0.030
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 1.5 to 3.0
0