MakeItFrom.com
Menu (ESC)

CC495K Bronze vs. Grade 23 Titanium

CC495K bronze belongs to the copper alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC495K bronze and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 7.0
6.7 to 11
Poisson's Ratio 0.35
0.32
Shear Modulus, GPa 37
40
Tensile Strength: Ultimate (UTS), MPa 240
930 to 940
Tensile Strength: Yield (Proof), MPa 120
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 140
340
Melting Completion (Liquidus), °C 930
1610
Melting Onset (Solidus), °C 820
1560
Specific Heat Capacity, J/kg-K 350
560
Thermal Conductivity, W/m-K 48
7.1
Thermal Expansion, µm/m-K 19
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
36
Density, g/cm3 9.0
4.4
Embodied Carbon, kg CO2/kg material 3.6
38
Embodied Energy, MJ/kg 58
610
Embodied Water, L/kg 400
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 68
3430 to 3560
Stiffness to Weight: Axial, points 6.2
13
Stiffness to Weight: Bending, points 17
35
Strength to Weight: Axial, points 7.3
58 to 59
Strength to Weight: Bending, points 9.4
48
Thermal Diffusivity, mm2/s 15
2.9
Thermal Shock Resistance, points 8.8
67 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.010
5.5 to 6.5
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 76 to 82
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 8.0 to 11
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.1
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0
0 to 0.4