MakeItFrom.com
Menu (ESC)

CC499K Bronze vs. S82013 Stainless Steel

CC499K bronze belongs to the copper alloys classification, while S82013 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC499K bronze and the bottom bar is S82013 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
260
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 260
710
Tensile Strength: Yield (Proof), MPa 120
500

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
970
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 920
1380
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 73
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
11
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.4
Embodied Energy, MJ/kg 51
34
Embodied Water, L/kg 350
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
220
Resilience: Unit (Modulus of Resilience), kJ/m3 65
640
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1
26
Strength to Weight: Bending, points 10
23
Thermal Diffusivity, mm2/s 22
4.0
Thermal Shock Resistance, points 9.2
20

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.1
0
Arsenic (As), % 0 to 0.030
0
Bismuth (Bi), % 0 to 0.020
0
Cadmium (Cd), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.020
19.5 to 22
Copper (Cu), % 84 to 88
0.2 to 1.2
Iron (Fe), % 0 to 0.3
70.5 to 77.1
Lead (Pb), % 0 to 3.0
0
Manganese (Mn), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.6
0.5 to 1.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 0.9
Sulfur (S), % 0 to 0.040
0 to 0.030
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 4.0 to 6.0
0