MakeItFrom.com
Menu (ESC)

CC751S Brass vs. Grade 9 Titanium

CC751S brass belongs to the copper alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 5.6
11 to 17
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 450
700 to 960
Tensile Strength: Yield (Proof), MPa 320
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 130
330
Melting Completion (Liquidus), °C 850
1640
Melting Onset (Solidus), °C 810
1590
Specific Heat Capacity, J/kg-K 390
550
Thermal Conductivity, W/m-K 110
8.1
Thermal Expansion, µm/m-K 20
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
37
Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 2.8
36
Embodied Energy, MJ/kg 46
580
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 480
1380 to 3220
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 15
43 to 60
Strength to Weight: Bending, points 16
39 to 48
Thermal Diffusivity, mm2/s 35
3.3
Thermal Shock Resistance, points 15
52 to 71

Alloy Composition

Aluminum (Al), % 0 to 0.1
2.5 to 3.5
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 62.7 to 66
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.25 to 0.5
0 to 0.25
Lead (Pb), % 0.8 to 2.2
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.8
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0.65 to 1.1
0
Tin (Sn), % 0 to 0.8
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 27.9 to 35.6
0
Residuals, % 0
0 to 0.4