MakeItFrom.com
Menu (ESC)

CC755S Brass vs. S15700 Stainless Steel

CC755S brass belongs to the copper alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC755S brass and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
200 to 460
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.5
1.1 to 29
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 390
1180 to 1890
Tensile Strength: Yield (Proof), MPa 250
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
870
Melting Completion (Liquidus), °C 820
1440
Melting Onset (Solidus), °C 780
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 46
47
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 290
640 to 4660
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
42 to 67
Strength to Weight: Bending, points 15
32 to 43
Thermal Diffusivity, mm2/s 38
4.2
Thermal Shock Resistance, points 13
39 to 63

Alloy Composition

Aluminum (Al), % 0.4 to 0.7
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 59.5 to 61
0
Iron (Fe), % 0.050 to 0.2
69.6 to 76.8
Lead (Pb), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
6.5 to 7.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 35.8 to 38.9
0