MakeItFrom.com
Menu (ESC)

CC764S Brass vs. SAE-AISI 1090 Steel

CC764S brass belongs to the copper alloys classification, while SAE-AISI 1090 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC764S brass and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
220 to 280
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
11
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
72
Tensile Strength: Ultimate (UTS), MPa 680
790 to 950
Tensile Strength: Yield (Proof), MPa 290
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 180
240
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 850
1450
Melting Onset (Solidus), °C 810
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 94
50
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 36
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 390
730 to 1000
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
28 to 34
Strength to Weight: Bending, points 22
24 to 27
Thermal Diffusivity, mm2/s 30
13
Thermal Shock Resistance, points 22
25 to 31

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0.85 to 1.0
Copper (Cu), % 52 to 66
0
Iron (Fe), % 0.5 to 2.5
98 to 98.6
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0.3 to 4.0
0.6 to 0.9
Nickel (Ni), % 0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 20.7 to 50.2
0