MakeItFrom.com
Menu (ESC)

CC765S Brass vs. SAE-AISI 1090 Steel

CC765S brass belongs to the copper alloys classification, while SAE-AISI 1090 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
220 to 280
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
11
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 540
790 to 950
Tensile Strength: Yield (Proof), MPa 220
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 180
240
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 860
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 91
50
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 34
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 51
19
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 220
730 to 1000
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
28 to 34
Strength to Weight: Bending, points 18
24 to 27
Thermal Diffusivity, mm2/s 28
13
Thermal Shock Resistance, points 17
25 to 31

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0.85 to 1.0
Copper (Cu), % 51 to 65
0
Iron (Fe), % 0.5 to 2.0
98 to 98.6
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0.6 to 0.9
Nickel (Ni), % 0 to 6.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0