MakeItFrom.com
Menu (ESC)

EN-MC35110 Magnesium vs. C90400 Bronze

EN-MC35110 magnesium belongs to the magnesium alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
77
Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 3.1
24
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
41
Tensile Strength: Ultimate (UTS), MPa 230
310
Tensile Strength: Yield (Proof), MPa 150
180

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 140
170
Melting Completion (Liquidus), °C 600
990
Melting Onset (Solidus), °C 520
850
Specific Heat Capacity, J/kg-K 970
370
Thermal Conductivity, W/m-K 110
75
Thermal Expansion, µm/m-K 26
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
12
Electrical Conductivity: Equal Weight (Specific), % IACS 130
12

Otherwise Unclassified Properties

Base Metal Price, % relative 18
34
Density, g/cm3 1.9
8.7
Embodied Carbon, kg CO2/kg material 24
3.5
Embodied Energy, MJ/kg 170
56
Embodied Water, L/kg 940
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
65
Resilience: Unit (Modulus of Resilience), kJ/m3 260
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 63
18
Strength to Weight: Axial, points 34
10
Strength to Weight: Bending, points 44
12
Thermal Diffusivity, mm2/s 61
23
Thermal Shock Resistance, points 14
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 0 to 0.030
86 to 89
Iron (Fe), % 0 to 0.010
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 92 to 95.4
0
Manganese (Mn), % 0 to 0.15
0 to 0.010
Nickel (Ni), % 0 to 0.0050
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.010
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
1.0 to 5.0
Zirconium (Zr), % 0.4 to 1.0
0 to 0.1
Residuals, % 0
0 to 0.7