MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. AWS ERNiFeCr-2

EN-MC65120 magnesium belongs to the magnesium alloys classification, while AWS ERNiFeCr-2 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is AWS ERNiFeCr-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 3.1
28
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
75
Tensile Strength: Ultimate (UTS), MPa 160
1300

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 970
450
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
75
Density, g/cm3 1.9
8.3
Embodied Carbon, kg CO2/kg material 25
13
Embodied Energy, MJ/kg 190
190
Embodied Water, L/kg 930
250

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
23
Strength to Weight: Axial, points 23
43
Strength to Weight: Bending, points 34
32
Thermal Diffusivity, mm2/s 56
3.2
Thermal Shock Resistance, points 9.8
38

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.8
Boron (B), % 0
0 to 0.0030
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 21
Copper (Cu), % 0 to 0.030
0 to 0.3
Iron (Fe), % 0 to 0.010
11.6 to 24.6
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0 to 0.0050
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.010
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.5