MakeItFrom.com
Menu (ESC)

Grade 11 Titanium vs. EN 1.0314 Steel

Grade 11 titanium belongs to the titanium alloys classification, while EN 1.0314 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 11 titanium and the bottom bar is EN 1.0314 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
92 to 120
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 29
24 to 25
Fatigue Strength, MPa 170
140 to 220
Poisson's Ratio 0.32
0.29
Reduction in Area, % 37
78 to 86
Shear Modulus, GPa 38
73
Shear Strength, MPa 200
200 to 250
Tensile Strength: Ultimate (UTS), MPa 310
320 to 400
Tensile Strength: Yield (Proof), MPa 230
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1470
Melting Onset (Solidus), °C 1610
1430
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
53
Thermal Expansion, µm/m-K 9.2
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
7.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 47
1.4
Embodied Energy, MJ/kg 800
18
Embodied Water, L/kg 470
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
68 to 87
Resilience: Unit (Modulus of Resilience), kJ/m3 240
95 to 250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 19
11 to 14
Strength to Weight: Bending, points 22
13 to 15
Thermal Diffusivity, mm2/s 8.9
14
Thermal Shock Resistance, points 22
10 to 13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.080
0 to 0.030
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
99.365 to 99.78
Manganese (Mn), % 0
0.2 to 0.4
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.12 to 0.25
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 98.8 to 99.88
0
Residuals, % 0 to 0.4
0