MakeItFrom.com
Menu (ESC)

Grade 13 Titanium vs. 6025 Aluminum

Grade 13 titanium belongs to the titanium alloys classification, while 6025 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 13 titanium and the bottom bar is 6025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 27
2.8 to 10
Fatigue Strength, MPa 140
67 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 200
110 to 140
Tensile Strength: Ultimate (UTS), MPa 310
190 to 240
Tensile Strength: Yield (Proof), MPa 190
68 to 210

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
550
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 22
130
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
33
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
110

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
2.8
Embodied Carbon, kg CO2/kg material 32
8.5
Embodied Energy, MJ/kg 520
150
Embodied Water, L/kg 210
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
6.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 180
33 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 19
19 to 24
Strength to Weight: Bending, points 22
26 to 31
Thermal Diffusivity, mm2/s 8.9
54
Thermal Shock Resistance, points 24
8.2 to 10

Alloy Composition

Aluminum (Al), % 0
91.7 to 96.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0.2 to 0.7
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.7
Magnesium (Mg), % 0
2.1 to 3.0
Manganese (Mn), % 0
0.6 to 1.4
Nickel (Ni), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.1
0
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0.8 to 1.5
Titanium (Ti), % 98.5 to 99.56
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.15