MakeItFrom.com
Menu (ESC)

Grade 13 Titanium vs. AISI 446 Stainless Steel

Grade 13 titanium belongs to the titanium alloys classification, while AISI 446 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 13 titanium and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 27
23
Fatigue Strength, MPa 140
200
Poisson's Ratio 0.32
0.27
Reduction in Area, % 34
50
Shear Modulus, GPa 41
79
Shear Strength, MPa 200
360
Tensile Strength: Ultimate (UTS), MPa 310
570
Tensile Strength: Yield (Proof), MPa 190
300

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
1180
Melting Completion (Liquidus), °C 1660
1510
Melting Onset (Solidus), °C 1610
1430
Specific Heat Capacity, J/kg-K 540
490
Thermal Conductivity, W/m-K 22
17
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.4
Embodied Energy, MJ/kg 520
35
Embodied Water, L/kg 210
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
230
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
26
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 8.9
4.6
Thermal Shock Resistance, points 24
19

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.2
Chromium (Cr), % 0
23 to 27
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
69.2 to 77
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0.4 to 0.6
0 to 0.75
Nitrogen (N), % 0 to 0.030
0 to 0.25
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.5 to 99.56
0
Residuals, % 0 to 0.4
0