MakeItFrom.com
Menu (ESC)

Grade 13 Titanium vs. SAE-AISI 1010 Steel

Grade 13 titanium belongs to the titanium alloys classification, while SAE-AISI 1010 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 13 titanium and the bottom bar is SAE-AISI 1010 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 27
22 to 31
Fatigue Strength, MPa 140
150 to 230
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
46 to 56
Shear Modulus, GPa 41
73
Shear Strength, MPa 200
230 to 250
Tensile Strength: Ultimate (UTS), MPa 310
350 to 400
Tensile Strength: Yield (Proof), MPa 190
190 to 330

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1470
Melting Onset (Solidus), °C 1610
1430
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
47
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
12
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
14

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 32
1.4
Embodied Energy, MJ/kg 520
18
Embodied Water, L/kg 210
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
82 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 180
100 to 290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 19
12 to 14
Strength to Weight: Bending, points 22
14 to 15
Thermal Diffusivity, mm2/s 8.9
13
Thermal Shock Resistance, points 24
11 to 13

Alloy Composition

Carbon (C), % 0 to 0.080
0.080 to 0.13
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
99.18 to 99.62
Manganese (Mn), % 0
0.3 to 0.6
Nickel (Ni), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 98.5 to 99.56
0
Residuals, % 0 to 0.4
0