MakeItFrom.com
Menu (ESC)

Grade 13 Titanium vs. SAE-AISI 1144 Steel

Grade 13 titanium belongs to the titanium alloys classification, while SAE-AISI 1144 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 13 titanium and the bottom bar is SAE-AISI 1144 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 27
11 to 17
Fatigue Strength, MPa 140
280 to 430
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
34 to 40
Shear Modulus, GPa 41
72
Shear Strength, MPa 200
460 to 510
Tensile Strength: Ultimate (UTS), MPa 310
750 to 840
Tensile Strength: Yield (Proof), MPa 190
420 to 690

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
51
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.9
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 32
1.4
Embodied Energy, MJ/kg 520
19
Embodied Water, L/kg 210
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
91 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
480 to 1290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 19
27 to 30
Strength to Weight: Bending, points 22
23 to 25
Thermal Diffusivity, mm2/s 8.9
14
Thermal Shock Resistance, points 24
22 to 24

Alloy Composition

Carbon (C), % 0 to 0.080
0.4 to 0.48
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
97.5 to 98
Manganese (Mn), % 0
1.4 to 1.7
Nickel (Ni), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Sulfur (S), % 0
0.24 to 0.33
Titanium (Ti), % 98.5 to 99.56
0
Residuals, % 0 to 0.4
0