MakeItFrom.com
Menu (ESC)

Grade 13 Titanium vs. C69710 Brass

Grade 13 titanium belongs to the titanium alloys classification, while C69710 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 13 titanium and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 27
25
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 41
41
Shear Strength, MPa 200
300
Tensile Strength: Ultimate (UTS), MPa 310
470
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
930
Melting Onset (Solidus), °C 1610
880
Specific Heat Capacity, J/kg-K 540
400
Thermal Conductivity, W/m-K 22
40
Thermal Expansion, µm/m-K 8.7
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
26
Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 32
2.7
Embodied Energy, MJ/kg 520
44
Embodied Water, L/kg 210
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
99
Resilience: Unit (Modulus of Resilience), kJ/m3 180
250
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 19
16
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 8.9
12
Thermal Shock Resistance, points 24
16

Alloy Composition

Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
75 to 80
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0
0 to 0.4
Nickel (Ni), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.1
0
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
2.5 to 3.5
Titanium (Ti), % 98.5 to 99.56
0
Zinc (Zn), % 0
13.8 to 22
Residuals, % 0
0 to 0.5