MakeItFrom.com
Menu (ESC)

Grade 13 Titanium vs. N08135 Stainless Steel

Grade 13 titanium belongs to the titanium alloys classification, while N08135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 13 titanium and the bottom bar is N08135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 27
46
Fatigue Strength, MPa 140
220
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
80
Shear Strength, MPa 200
400
Tensile Strength: Ultimate (UTS), MPa 310
570
Tensile Strength: Yield (Proof), MPa 190
240

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
460
Thermal Expansion, µm/m-K 8.7
16

Otherwise Unclassified Properties

Base Metal Price, % relative 37
39
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 32
6.8
Embodied Energy, MJ/kg 520
94
Embodied Water, L/kg 210
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
210
Resilience: Unit (Modulus of Resilience), kJ/m3 180
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 22
19
Thermal Shock Resistance, points 24
13

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 0
0 to 0.7
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
30.2 to 42.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0.4 to 0.6
33 to 38
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.030
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.5 to 99.56
0
Tungsten (W), % 0
0.2 to 0.8
Residuals, % 0 to 0.4
0