MakeItFrom.com
Menu (ESC)

Grade 13 Titanium vs. N10001 Nickel

Grade 13 titanium belongs to the titanium alloys classification, while N10001 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 13 titanium and the bottom bar is N10001 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 27
45
Fatigue Strength, MPa 140
300
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
84
Shear Strength, MPa 200
550
Tensile Strength: Ultimate (UTS), MPa 310
780
Tensile Strength: Yield (Proof), MPa 190
350

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 320
900
Melting Completion (Liquidus), °C 1660
1620
Melting Onset (Solidus), °C 1610
1570
Specific Heat Capacity, J/kg-K 540
390
Thermal Expansion, µm/m-K 8.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 37
75
Density, g/cm3 4.5
9.2
Embodied Carbon, kg CO2/kg material 32
15
Embodied Energy, MJ/kg 520
200
Embodied Water, L/kg 210
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73
290
Resilience: Unit (Modulus of Resilience), kJ/m3 180
280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 22
21
Thermal Shock Resistance, points 24
25

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
0 to 1.0
Cobalt (Co), % 0
0 to 2.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
4.0 to 6.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0.4 to 0.6
58 to 69.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.5 to 99.56
0
Vanadium (V), % 0
0.2 to 0.4
Residuals, % 0 to 0.4
0