MakeItFrom.com
Menu (ESC)

Grade 14 Titanium vs. S15700 Stainless Steel

Grade 14 titanium belongs to the titanium alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 14 titanium and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
1.1 to 29
Fatigue Strength, MPa 220
370 to 770
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 290
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 460
1180 to 1890
Tensile Strength: Yield (Proof), MPa 310
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
870
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
15
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 32
3.4
Embodied Energy, MJ/kg 520
47
Embodied Water, L/kg 210
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 450
640 to 4660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 28
42 to 67
Strength to Weight: Bending, points 29
32 to 43
Thermal Diffusivity, mm2/s 8.5
4.2
Thermal Shock Resistance, points 35
39 to 63

Alloy Composition

Aluminum (Al), % 0
0.75 to 1.5
Carbon (C), % 0 to 0.080
0 to 0.090
Chromium (Cr), % 0
14 to 16
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
69.6 to 76.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.4 to 0.6
6.5 to 7.7
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.040 to 0.060
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.4 to 99.56
0
Residuals, % 0 to 0.4
0