MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. EN 1.4028 Stainless Steel

Grade 16 titanium belongs to the titanium alloys classification, while EN 1.4028 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is EN 1.4028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 23
11 to 17
Fatigue Strength, MPa 240
230 to 400
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 38
76
Shear Strength, MPa 250
410 to 550
Tensile Strength: Ultimate (UTS), MPa 400
660 to 930
Tensile Strength: Yield (Proof), MPa 340
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
760
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 22
30
Thermal Expansion, µm/m-K 9.2
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
3.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 36
1.9
Embodied Energy, MJ/kg 600
27
Embodied Water, L/kg 230
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
94 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 550
380 to 1360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 25
24 to 33
Strength to Weight: Bending, points 27
22 to 27
Thermal Diffusivity, mm2/s 8.9
8.1
Thermal Shock Resistance, points 29
23 to 32

Alloy Composition

Carbon (C), % 0 to 0.080
0.26 to 0.35
Chromium (Cr), % 0
12 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
83.1 to 87.7
Manganese (Mn), % 0
0 to 1.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.8 to 99.96
0
Residuals, % 0 to 0.4
0