MakeItFrom.com
Menu (ESC)

Grade 16 Titanium vs. EN 1.4594 Stainless Steel

Grade 16 titanium belongs to the titanium alloys classification, while EN 1.4594 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 16 titanium and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
11 to 17
Fatigue Strength, MPa 240
490 to 620
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 38
76
Shear Strength, MPa 250
620 to 700
Tensile Strength: Ultimate (UTS), MPa 400
1020 to 1170
Tensile Strength: Yield (Proof), MPa 340
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
820
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
16
Thermal Expansion, µm/m-K 9.2
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
3.2
Embodied Energy, MJ/kg 600
45
Embodied Water, L/kg 230
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 550
1660 to 3320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 25
36 to 41
Strength to Weight: Bending, points 27
29 to 31
Thermal Diffusivity, mm2/s 8.9
4.4
Thermal Shock Resistance, points 29
34 to 39

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 0
1.2 to 2.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
72.6 to 79.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 0
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.8 to 99.96
0
Residuals, % 0 to 0.4
0