MakeItFrom.com
Menu (ESC)

Grade 17 Titanium vs. C11400 Copper

Grade 17 titanium belongs to the titanium alloys classification, while C11400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 17 titanium and the bottom bar is C11400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 27
2.8 to 51
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 38
43
Shear Strength, MPa 180
150 to 210
Tensile Strength: Ultimate (UTS), MPa 270
220 to 400
Tensile Strength: Yield (Proof), MPa 210
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1080
Melting Onset (Solidus), °C 1610
1030
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 23
390
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
100
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
100

Otherwise Unclassified Properties

Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 36
2.6
Embodied Energy, MJ/kg 600
42
Embodied Water, L/kg 230
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 220
24 to 680
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 17
6.8 to 12
Strength to Weight: Bending, points 21
9.1 to 14
Thermal Diffusivity, mm2/s 9.3
110
Thermal Shock Resistance, points 21
7.8 to 14

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.84 to 99.966
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Silver (Ag), % 0
0.034 to 0.060
Titanium (Ti), % 99.015 to 99.96
0
Residuals, % 0
0 to 0.1