MakeItFrom.com
Menu (ESC)

Grade 19 Titanium vs. EN 1.4724 Stainless Steel

Grade 19 titanium belongs to the titanium alloys classification, while EN 1.4724 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 19 titanium and the bottom bar is EN 1.4724 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.6 to 17
16
Fatigue Strength, MPa 550 to 620
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 47
75
Shear Strength, MPa 550 to 750
340
Tensile Strength: Ultimate (UTS), MPa 890 to 1300
550
Tensile Strength: Yield (Proof), MPa 870 to 1170
280

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 370
850
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1600
1390
Specific Heat Capacity, J/kg-K 520
490
Thermal Conductivity, W/m-K 6.2
21
Thermal Expansion, µm/m-K 9.1
11

Otherwise Unclassified Properties

Base Metal Price, % relative 45
7.0
Density, g/cm3 5.0
7.7
Embodied Carbon, kg CO2/kg material 47
2.0
Embodied Energy, MJ/kg 760
28
Embodied Water, L/kg 230
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
73
Resilience: Unit (Modulus of Resilience), kJ/m3 3040 to 5530
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 49 to 72
20
Strength to Weight: Bending, points 41 to 53
19
Thermal Diffusivity, mm2/s 2.4
5.6
Thermal Shock Resistance, points 57 to 83
19

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0.7 to 1.2
Carbon (C), % 0 to 0.050
0 to 0.12
Chromium (Cr), % 5.5 to 6.5
12 to 14
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
82.2 to 86.6
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.12
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.7 to 1.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 71.1 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0