MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. 1050 Aluminum

Grade 23 titanium belongs to the titanium alloys classification, while 1050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 6.7 to 11
4.6 to 37
Fatigue Strength, MPa 470 to 500
31 to 57
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 540 to 570
52 to 81
Tensile Strength: Ultimate (UTS), MPa 930 to 940
76 to 140
Tensile Strength: Yield (Proof), MPa 850 to 870
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1560
650
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.1
230
Thermal Expansion, µm/m-K 9.4
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
61
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
200

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.7
Embodied Carbon, kg CO2/kg material 38
8.3
Embodied Energy, MJ/kg 610
160
Embodied Water, L/kg 200
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
4.6 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 58 to 59
7.8 to 14
Strength to Weight: Bending, points 48
15 to 22
Thermal Diffusivity, mm2/s 2.9
94
Thermal Shock Resistance, points 67 to 68
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
99.5 to 100
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.050
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
0 to 0.25
Titanium (Ti), % 88.1 to 91
0 to 0.030
Vanadium (V), % 3.5 to 4.5
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 0.4
0

Comparable Variants