MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. 705.0 Aluminum

Grade 23 titanium belongs to the titanium alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 6.7 to 11
8.4 to 10
Fatigue Strength, MPa 470 to 500
63 to 98
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 930 to 940
240 to 260
Tensile Strength: Yield (Proof), MPa 850 to 870
130

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 340
180
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1560
610
Specific Heat Capacity, J/kg-K 560
890
Thermal Conductivity, W/m-K 7.1
140
Thermal Expansion, µm/m-K 9.4
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.8
Embodied Carbon, kg CO2/kg material 38
8.4
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
120 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
49
Strength to Weight: Axial, points 58 to 59
24 to 26
Strength to Weight: Bending, points 48
31 to 32
Thermal Diffusivity, mm2/s 2.9
55
Thermal Shock Resistance, points 67 to 68
11

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
92.3 to 98.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 0
0 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 88.1 to 91
0 to 0.25
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15