MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. ACI-ASTM CF3M Steel

Grade 23 titanium belongs to the titanium alloys classification, while ACI-ASTM CF3M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is ACI-ASTM CF3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.7 to 11
55
Fatigue Strength, MPa 470 to 500
270
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 930 to 940
520
Tensile Strength: Yield (Proof), MPa 850 to 870
260

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 340
990
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1430
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
16
Thermal Expansion, µm/m-K 9.4
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
3.8
Embodied Energy, MJ/kg 610
53
Embodied Water, L/kg 200
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
240
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
18
Strength to Weight: Bending, points 48
18
Thermal Diffusivity, mm2/s 2.9
4.3
Thermal Shock Resistance, points 67 to 68
12

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
17 to 21
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
59.9 to 72
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
9.0 to 13
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0