MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. ASTM A182 Grade FR

Grade 23 titanium belongs to the titanium alloys classification, while ASTM A182 grade FR belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is ASTM A182 grade FR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7 to 11
28
Fatigue Strength, MPa 470 to 500
270
Poisson's Ratio 0.32
0.29
Reduction in Area, % 30
43
Shear Modulus, GPa 40
72
Shear Strength, MPa 540 to 570
320
Tensile Strength: Ultimate (UTS), MPa 930 to 940
490
Tensile Strength: Yield (Proof), MPa 850 to 870
360

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
410
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
52
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.3
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
1.6
Embodied Energy, MJ/kg 610
21
Embodied Water, L/kg 200
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
17
Strength to Weight: Bending, points 48
17
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 67 to 68
14

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.2
Copper (Cu), % 0
0.75 to 1.3
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
95.2 to 97.3
Manganese (Mn), % 0
0.4 to 1.1
Nickel (Ni), % 0
1.6 to 2.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.045
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0