MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. ASTM A414 Steel

Grade 23 titanium belongs to the titanium alloys classification, while ASTM A414 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is ASTM A414 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7 to 11
15 to 26
Fatigue Strength, MPa 470 to 500
140 to 260
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 540 to 570
230 to 370
Tensile Strength: Ultimate (UTS), MPa 930 to 940
360 to 590
Tensile Strength: Yield (Proof), MPa 850 to 870
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
49 to 50
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.2 to 7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.3 to 8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.2
Density, g/cm3 4.4
7.8 to 7.9
Embodied Carbon, kg CO2/kg material 38
1.5 to 1.6
Embodied Energy, MJ/kg 610
20 to 22
Embodied Water, L/kg 200
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
69 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
100 to 330
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
13 to 21
Strength to Weight: Bending, points 48
14 to 20
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 67 to 68
11 to 17