MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. AWS E410

Grade 23 titanium belongs to the titanium alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7 to 11
23
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 930 to 940
580
Tensile Strength: Yield (Proof), MPa 850 to 870
440

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
28
Thermal Expansion, µm/m-K 9.4
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
7.5
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
2.0
Embodied Energy, MJ/kg 610
28
Embodied Water, L/kg 200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
500
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
21
Strength to Weight: Bending, points 48
20
Thermal Diffusivity, mm2/s 2.9
7.5
Thermal Shock Resistance, points 67 to 68
16

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
82.2 to 89
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.7
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0