MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. Grade 365 Molybdenum

Grade 23 titanium belongs to the titanium alloys classification, while grade 365 molybdenum belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is grade 365 molybdenum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
310
Elongation at Break, % 6.7 to 11
6.3
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
120
Tensile Strength: Ultimate (UTS), MPa 930 to 940
620
Tensile Strength: Yield (Proof), MPa 850 to 870
530

Thermal Properties

Latent Heat of Fusion, J/g 410
370
Specific Heat Capacity, J/kg-K 560
250
Thermal Expansion, µm/m-K 9.4
7.0

Otherwise Unclassified Properties

Density, g/cm3 4.4
10
Embodied Carbon, kg CO2/kg material 38
28
Embodied Energy, MJ/kg 610
330
Embodied Water, L/kg 200
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
37
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
450
Stiffness to Weight: Axial, points 13
17
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 58 to 59
17
Strength to Weight: Bending, points 48
16
Thermal Shock Resistance, points 67 to 68
21

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.010
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
0 to 0.010
Molybdenum (Mo), % 0
99.9 to 100
Nickel (Ni), % 0
0 to 0.0020
Nitrogen (N), % 0 to 0.030
0 to 0.0020
Oxygen (O), % 0 to 0.13
0 to 0.0015
Silicon (Si), % 0
0 to 0.010
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0