MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. Nickel 718

Grade 23 titanium belongs to the titanium alloys classification, while nickel 718 belongs to the nickel alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7 to 11
12 to 50
Fatigue Strength, MPa 470 to 500
460 to 760
Poisson's Ratio 0.32
0.29
Reduction in Area, % 30
34 to 64
Rockwell C Hardness 32
40
Shear Modulus, GPa 40
75
Shear Strength, MPa 540 to 570
660 to 950
Tensile Strength: Ultimate (UTS), MPa 930 to 940
930 to 1530
Tensile Strength: Yield (Proof), MPa 850 to 870
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
980
Melting Completion (Liquidus), °C 1610
1340
Melting Onset (Solidus), °C 1560
1260
Specific Heat Capacity, J/kg-K 560
450
Thermal Conductivity, W/m-K 7.1
11
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
75
Density, g/cm3 4.4
8.3
Embodied Carbon, kg CO2/kg material 38
13
Embodied Energy, MJ/kg 610
190
Embodied Water, L/kg 200
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
660 to 4560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 58 to 59
31 to 51
Strength to Weight: Bending, points 48
25 to 35
Thermal Diffusivity, mm2/s 2.9
3.0
Thermal Shock Resistance, points 67 to 68
27 to 44

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0.2 to 0.8
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
11.1 to 24.6
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 88.1 to 91
0.65 to 1.2
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0