MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. C66200 Brass

Grade 23 titanium belongs to the titanium alloys classification, while C66200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.7 to 11
8.0 to 15
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Shear Strength, MPa 540 to 570
270 to 300
Tensile Strength: Ultimate (UTS), MPa 930 to 940
450 to 520
Tensile Strength: Yield (Proof), MPa 850 to 870
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 340
180
Melting Completion (Liquidus), °C 1610
1070
Melting Onset (Solidus), °C 1560
1030
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
150
Thermal Expansion, µm/m-K 9.4
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
36

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.4
8.7
Embodied Carbon, kg CO2/kg material 38
2.7
Embodied Energy, MJ/kg 610
43
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
760 to 1030
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 58 to 59
14 to 17
Strength to Weight: Bending, points 48
15 to 16
Thermal Diffusivity, mm2/s 2.9
45
Thermal Shock Resistance, points 67 to 68
16 to 18

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
86.6 to 91
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Nickel (Ni), % 0
0.3 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0.050 to 0.2
Tin (Sn), % 0
0.2 to 0.7
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
6.5 to 12.9
Residuals, % 0
0 to 0.5