MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. C85700 Brass

Grade 23 titanium belongs to the titanium alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 6.7 to 11
17
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 930 to 940
310
Tensile Strength: Yield (Proof), MPa 850 to 870
110

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 340
120
Melting Completion (Liquidus), °C 1610
940
Melting Onset (Solidus), °C 1560
910
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
84
Thermal Expansion, µm/m-K 9.4
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
25

Otherwise Unclassified Properties

Base Metal Price, % relative 36
24
Density, g/cm3 4.4
8.0
Embodied Carbon, kg CO2/kg material 38
2.8
Embodied Energy, MJ/kg 610
47
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
41
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
59
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 58 to 59
11
Strength to Weight: Bending, points 48
13
Thermal Diffusivity, mm2/s 2.9
27
Thermal Shock Resistance, points 67 to 68
10

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.8
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
58 to 64
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
0 to 0.050
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
32 to 40
Residuals, % 0
0 to 1.3