MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. C93900 Bronze

Grade 23 titanium belongs to the titanium alloys classification, while C93900 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is C93900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
95
Elongation at Break, % 6.7 to 11
5.6
Poisson's Ratio 0.32
0.36
Shear Modulus, GPa 40
35
Tensile Strength: Ultimate (UTS), MPa 930 to 940
190
Tensile Strength: Yield (Proof), MPa 850 to 870
130

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 340
140
Melting Completion (Liquidus), °C 1610
940
Melting Onset (Solidus), °C 1560
850
Specific Heat Capacity, J/kg-K 560
340
Thermal Conductivity, W/m-K 7.1
52
Thermal Expansion, µm/m-K 9.4
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
11

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 4.4
9.1
Embodied Carbon, kg CO2/kg material 38
3.0
Embodied Energy, MJ/kg 610
49
Embodied Water, L/kg 200
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
9.5
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
83
Stiffness to Weight: Axial, points 13
5.8
Stiffness to Weight: Bending, points 35
17
Strength to Weight: Axial, points 58 to 59
5.9
Strength to Weight: Bending, points 48
8.1
Thermal Diffusivity, mm2/s 2.9
17
Thermal Shock Resistance, points 67 to 68
7.5

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
76.5 to 79.5
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
0 to 0.4
Lead (Pb), % 0
14 to 18
Nickel (Ni), % 0
0 to 0.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 1.1