MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. N10675 Nickel

Grade 23 titanium belongs to the titanium alloys classification, while N10675 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 6.7 to 11
47
Fatigue Strength, MPa 470 to 500
350
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
85
Shear Strength, MPa 540 to 570
610
Tensile Strength: Ultimate (UTS), MPa 930 to 940
860
Tensile Strength: Yield (Proof), MPa 850 to 870
400

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 340
910
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1370
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
11
Thermal Expansion, µm/m-K 9.4
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
80
Density, g/cm3 4.4
9.3
Embodied Carbon, kg CO2/kg material 38
16
Embodied Energy, MJ/kg 610
210
Embodied Water, L/kg 200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
330
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 58 to 59
26
Strength to Weight: Bending, points 48
22
Thermal Diffusivity, mm2/s 2.9
3.1
Thermal Shock Resistance, points 67 to 68
26

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
1.0 to 3.0
Manganese (Mn), % 0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 88.1 to 91
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 3.5 to 4.5
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.4
0