MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. S20161 Stainless Steel

Grade 23 titanium belongs to the titanium alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7 to 11
46
Fatigue Strength, MPa 470 to 500
360
Poisson's Ratio 0.32
0.28
Reduction in Area, % 30
45
Rockwell C Hardness 32
22
Shear Modulus, GPa 40
76
Shear Strength, MPa 540 to 570
690
Tensile Strength: Ultimate (UTS), MPa 930 to 940
980
Tensile Strength: Yield (Proof), MPa 850 to 870
390

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 340
870
Melting Completion (Liquidus), °C 1610
1380
Melting Onset (Solidus), °C 1560
1330
Specific Heat Capacity, J/kg-K 560
490
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.4
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 4.4
7.5
Embodied Carbon, kg CO2/kg material 38
2.7
Embodied Energy, MJ/kg 610
39
Embodied Water, L/kg 200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
360
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
26
Strength to Weight: Axial, points 58 to 59
36
Strength to Weight: Bending, points 48
29
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 67 to 68
22

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
15 to 18
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
65.6 to 73.9
Manganese (Mn), % 0
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0 to 0.030
0.080 to 0.2
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0